Multipel regression bruges til at undersøge forholdet mellem flere uafhængige variabler og en afhængig variabel. Mens flere regressionsmodeller giver dig mulighed for at analysere den relative indflydelse af disse uafhængige eller prediktorer, variabler på den afhængige eller kriterium, variabel, kan disse ofte komplekse datasæt føre til falske konklusioner, hvis de ikke analyseres korrekt.
Eksempler af multiple regression -
En ejendomsmægler kunne bruge flere regression til at analysere værdien af huse. For eksempel kunne hun bruge som uafhængige variabler størrelsen på husene, deres aldre, antallet af soveværelser, den gennemsnitlige boligpris i nabolaget og nærheden til skoler. Plottning af disse i en multiple regressionsmodel, hun kunne derefter bruge disse faktorer til at se deres forhold til priserne på husene som kriterievariablen.
Et andet eksempel på at bruge en multipel regressionsmodel kan være en person i menneskelige ressourcer, der bestemmer løn for ledelsespositioner - kriterievariablen. Prediktorvariablerne kan være hver leders anciennitet, det gennemsnitlige antal arbejdstimer, antallet af personer, der administreres og lederens afdelingsbudget.
Fordele ved flere regression -
Der er to hovedfordele ved at analysere data ved hjælp af "a multiple regression model.", 3, [[Den første er evnen til at bestemme den relative indflydelse af en eller flere prediktorvariabler til kriterieværdien. Ejendomsmægleren kunne finde ud af, at størrelsen på boligerne og antallet af soveværelser har en stærk sammenhæng med prisen på et hjem, mens nærheden til skoler overhovedet ikke har nogen sammenhæng, eller endda en negativ sammenhæng, hvis det primært er en pensionering community.
Den anden fordel er evnen til at identificere udliggere eller afvigelser. For eksempel kunne menneskelige ressourcechefere gennemgå dataene relateret til ledelseslønningerne, at antallet af arbejdede timer, afdelingsstørrelse og dets budget alle havde en stærk sammenhæng med lønninger, mens anciennitet ikke gjorde det. Alternativt kan det være, at alle de anførte prediktorværdier var korreleret med hver af de lønninger, der blev undersøgt, bortset fra en manager, der blev for meget betalt sammenlignet med de andre.
Ulemper ved flere regression -
Enhver ulempe at bruge en multipel regressionsmodel kommer normalt ned på de data, der bruges. To eksempler på dette bruger ufuldstændige data og konkluderer falskt, at en sammenhæng er en årsagssammenhæng.
Ved for eksempel at gennemgå prisen på boliger, antag at ejendomsmægleren kun kiggede på 10 boliger, hvoraf syv blev købt af unge forældre. I dette tilfælde kan forholdet mellem skolernes nærhed få hende til at tro, at dette havde en indflydelse på salgsprisen for alle hjem, der sælges i samfundet. Dette illustrerer faldgruberne af ufuldstændige data. Havde hun brugt en større prøve, kunne hun have fundet ud af, at ud af 100 solgte boliger, kun ti procent af boligværdierne var relateret til en skoles nærhed. Hvis hun havde brugt køberens aldre som en forudsigelsesværdi, kunne hun have fundet, at yngre købere var villige til at betale mere for boliger i samfundet end ældre købere.
I eksemplet med ledelseslønninger, antag at der var en outlier, der havde et mindre budget, mindre anciennitet og med færre personale til at styre, men som gjorde mere end nogen anden. HR-lederen kunne se på dataene og konkludere, at denne person bliver for meget betalt. Imidlertid ville denne konklusion være forkert, hvis han ikke tager højde for, at denne manager var ansvarlig for virksomhedens websted og havde et meget eftertragtet skillset inden for netværkssikkerhed.
Sidste artikelFordele og ulemper ved brug af Quadrat
Næste artikelFordele og ulemper ved en frekvenstabel